PriorGP#
- class obsidian.surrogates.custom_GP.PriorGP(train_X, train_Y)[source]#
Bases:
ExactGP,GPyTorchModelClass which builds a GP with custom prior distributions; by default set to the values of BoTorch SingleTaskGP
- __init__(train_X, train_Y)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(train_X, train_Y)Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
added_loss_terms()apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().condition_on_observations(X, Y[, noise])Condition the model on new observations.
constraint_for_parameter_name(param_name)constraints()construct_inputs(training_data)Construct Model keyword arguments from a SupervisedDataset.
cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Puts the model in eval mode and sets the transformed inputs.
extra_repr()Set the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x)Evaluate the forward pass of the model on inputs X
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_fantasy_model(inputs, targets, **kwargs)Returns a new GP model that incorporates the specified inputs and targets as new training data.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.hyperparameters()initialize(**kwargs)Set a value for a parameter
ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.load_strict_shapes(value)local_load_samples(samples_dict, memo, prefix)Replace the model's learned hyperparameters with samples from a posterior distribution.
modules()Return an iterator over all modules in the network.
named_added_loss_terms()Returns an iterator over module variational strategies, yielding both the name of the variational strategy as well as the strategy itself.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_constraints([memo, prefix])named_hyperparameters()named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
named_parameters_and_constraints()named_priors([memo, prefix])Returns an iterator over the module's priors, yielding the name of the prior, the prior, the associated parameter names, and the transformation callable.
named_variational_parameters()parameters([recurse])Return an iterator over module parameters.
posterior(X[, observation_noise, ...])Computes the posterior over model outputs at the provided points.
pyro_load_from_samples(samples_dict)Convert this Module in to a batch Module by loading parameters from the given samples_dict.
pyro_sample_from_prior()For each parameter in this Module and submodule that have defined priors, sample a value for that parameter from its corresponding prior with a pyro.sample primitive and load the resulting value in to the parameter.
register_added_loss_term(name)register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_constraint(param_name, constraint)register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, parameter)Adds a parameter to the module.
register_prior(name, prior, param_or_closure)Adds a prior to the module.
register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
sample_from_prior(prior_name)Sample parameter values from prior.
set_extra_state(state)Set extra state contained in the loaded state_dict.
set_train_data([inputs, targets, strict])Set training data (does not re-fit model hyper-parameters).
share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
subset_output(idcs)Subset the model along the output dimension.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
to_pyro_random_module()to_random_module()train([mode])Put the model in train mode.
transform_inputs(X[, input_transform])Transform inputs.
type(dst_type)Casts all parameters and buffers to
dst_type.update_added_loss_term(name, added_loss_term)variational_parameters()xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationbatch_shapeThe batch shape of the model.
call_super_initdtypes_of_buffersdump_patchesnum_outputsThe number of outputs of the model.
train_targetslikelihoodtraining