DNN#
- class obsidian.surrogates.custom_torch.DNN(train_X: Tensor, train_Y: Tensor, p_dropout: float = 0.2, h_width: int = 16, h_layers: int = 2, num_outputs: int = 1)[source]#
Bases:
EnsembleModel,FantasizeMixin- __init__(train_X: Tensor, train_Y: Tensor, p_dropout: float = 0.2, h_width: int = 16, h_layers: int = 2, num_outputs: int = 1)[source]#
Initialize internal Module state, shared by both nn.Module and ScriptModule.
Methods
__init__(train_X, train_Y[, p_dropout, ...])Initialize internal Module state, shared by both nn.Module and ScriptModule.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().Condition the model to new observations, returning a fantasy model
construct_inputs(training_data)Construct Model keyword arguments from a SupervisedDataset.
cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Puts the model in eval mode and sets the transformed inputs.
extra_repr()Set the extra representation of the module.
fantasize(X)Construct a fantasy model.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(x)Compute the (ensemble) model output at X.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters([recurse])Return an iterator over module parameters.
posterior(X[, n_sample, output_indices, ...])Calculates the posterior distribution of the model at X
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
subset_output(idcs)Subset the model along the output dimension.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Put the model in train mode.
transform_inputs(X[, input_transform])Transform inputs.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationbatch_shapeThe batch shape of the model.
call_super_initdtypes_of_buffersdump_patchesNumber of outputs of the model
training- condition_on_observations(X: Tensor, Y: Tensor) TFantasizeMixin[source]#
Condition the model to new observations, returning a fantasy model
- fantasize(X: Tensor) Model[source]#
Construct a fantasy model.
Constructs a fantasy model in the following fashion: (1) compute the model posterior at X, including observation noise. If observation_noise is a Tensor, use it directly as the observation noise to add. (2) sample from this posterior (using sampler) to generate “fake” observations. (3) condition the model on the new fake observations.
- Parameters:
X – A batch_shape x n’ x d-dim Tensor, where d is the dimension of the feature space, n’ is the number of points per batch, and batch_shape is the batch shape (must be compatible with the batch shape of the model).
sampler – The sampler used for sampling from the posterior at X.
observation_noise – A model_batch_shape x 1 x m-dim tensor or a model_batch_shape x n’ x m-dim tensor containing the average noise for each batch and output, where m is the number of outputs. noise must be in the outcome-transformed space if an outcome transform is used. If None and using an inferred noise likelihood, the noise will be the inferred noise level. If using a fixed noise likelihood, the mean across the observation noise in the training data is used as observation noise.
kwargs – Will be passed to model.condition_on_observations
- Returns:
The constructed fantasy model.
- forward(x: Tensor) Tensor[source]#
Compute the (ensemble) model output at X.
- Parameters:
X – A batch_shape x n x d-dim input tensor X.
- Returns:
A batch_shape x s x n x m-dimensional output tensor where s is the size of the ensemble.
- property num_outputs: int#
Number of outputs of the model