ExpDesigner#
- class obsidian.experiment.design.ExpDesigner(X_space: ParamSpace, seed: int | None = None)[source]#
Bases:
object
ExpDesigner is a base class for designing experiments in a parameter space.
- X_space#
The parameter space for the experiment.
- Type:
- seed#
The randomization seed.
- Type:
int | None
- Raises:
TypeError – If X_space is not an obsidian ParamSpace object.
- __init__(X_space: ParamSpace, seed: int | None = None)[source]#
Methods
__init__
(X_space[, seed])initialize
([m_initial, method, sample_custom])Initializes the experiment design.
- initialize(m_initial: int | None = None, method: str = 'LHS', sample_custom: Tensor | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | int | float | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes] | None = None) DataFrame [source]#
Initializes the experiment design.
- Parameters:
m_initial (int) – The number of experiments to initialize.
method (str, optional) – The method to use for initialization. Defaults to
'LHS'
.seed (int | None, optional) – The randomization seed. Defaults to
None
.sample_custom (Tensor | ArrayLike | None, optional) – Custom samples for initialization. Defaults to
None
.
- Returns:
The initialized experiment design.
- Return type:
pd.DataFrame
- Raises:
KeyError – If method is not one of the supported methods.
ValueError – If sample_custom is None when method is ‘Custom’.
ValueError – If the number of columns in sample_custom does not match the size of the feature space.