ParamSpace#

class obsidian.parameters.param_space.ParamSpace(params: list[Parameter])[source]#

Bases: IParamSpace

Class designed to define the parameter space in which an optimization can be conducted.

params#

A tuple of Parameter types defining the parameter space.

Type:

tuple[Parameter]

X_names#

A tuple of the names of the parameters.

Type:

tuple[str]

X_cont#

A list of the names of the continuous parameters.

Type:

list[str]

X_obs#

A list of the names of the observational parameters.

Type:

list[str]

X_discrete#

A dictionary mapping the names of the discrete parameters to their categories.

Type:

dict[str, list[str]]

X_task#

A dictionary mapping the names of the task parameters to their categories.

Type:

dict[str, list[str]]

X_min#

A tensor containing the minimum values of the parameters.

Type:

torch.Tensor

X_max#

A tensor containing the maximum values of the parameters.

Type:

torch.Tensor

X_range#

A tensor containing the range of the parameters.

Type:

torch.Tensor

X_static#

A list of the names of the static parameters.

Type:

list[str]

X_vary#

A list of the names of the varying parameters.

Type:

list[str]

n_dim#

The number of dimensions in the parameter space.

Type:

int

n_tdim#

The total number of dimensions in the parameter space after transformation.

Type:

int

t_map#

A dictionary mapping parameter indices to transformed indices.

Type:

dict

tinv_map#

A dictionary mapping transformed indices to parameter indices.

Type:

dict

X_discrete_idx#

A list of the indices of the discrete parameters.

Type:

list[int]

X_t_discrete_idx#

A list of the indices of the transformed discrete parameters.

Type:

list[int]

X_t_cat_idx#

A list of the indices of the transformed categorical parameters.

Type:

list[int]

X_t_task_idx#

The index of the transformed task parameter.

Type:

int

search_space#

The allowable search space for future optimization.

Type:

pd.DataFrame

Raises:
  • ValueError – If the X_names are not unique.

  • UnsupportedError – If there is more than one task parameter.

__init__(params: list[Parameter])[source]#

Methods

__init__(params)

clear_constraints()

Clears all constraints from the input space.

constrain_inputs(constraint)

Constrains the input space based on the specified equality, inequality, or nonlinear constraint.

decode(X)

Decode parameter from transformed space

encode(X)

Encode parameter to a format that can be used for training

load_state(obj_dict)

Loads the state of the ParamSpace object from a dictionary.

map_inv_transform()

Maps the inverse of the transformed dictionary.

map_transform()

Maps the parameter indices to transformed indices based on the parameter types.

mean()

Calculates the mean values for each parameter in the parameter space.

open_search()

Set the search space to the parameter space

save_state()

Saves the state of the ParamSpace object.

unit_demap(X)

Map from 0,1 space to measured space

unit_map(X)

Map from measured to 0,1 space

Attributes

search_space

Returns the search space for the parameter space.

clear_constraints() None[source]#

Clears all constraints from the input space.

constrain_inputs(constraint: Input_Constraint) None[source]#

Constrains the input space based on the specified equality, inequality, or nonlinear constraint.

Parameters:

constraint (Input_Constraint) – The constraint to be applied to the input space.

decode(X)[source]#

Decode parameter from transformed space

encode(X)[source]#

Encode parameter to a format that can be used for training

classmethod load_state(obj_dict: dict)[source]#

Loads the state of the ParamSpace object from a dictionary.

Parameters:

obj_dict (dict) – A dictionary containing the state of the ParamSpace object.

Returns:

A new ParamSpace object with the loaded state.

Return type:

ParamSpace

map_inv_transform() dict[source]#

Maps the inverse of the transformed dictionary.

Returns:

A dictionary where the keys are the original values and the values are the original keys.

Return type:

dict

map_transform() dict[source]#

Maps the parameter indices to transformed indices based on the parameter types.

Returns:

A dictionary mapping parameter indices to transformed indices.

Return type:

dict

mean() DataFrame[source]#

Calculates the mean values for each parameter in the parameter space.

Returns:

A DataFrame containing the mean values for each parameter.

Return type:

pd.DataFrame

Set the search space to the parameter space

save_state() dict[source]#

Saves the state of the ParamSpace object.

Returns:

A dictionary containing the state of the ParamSpace object.

Return type:

dict

property search_space: DataFrame#

Returns the search space for the parameter space.

Returns:

A dataframe containing the search space for the parameter space.

Return type:

pd.DataFrame

unit_demap(X)[source]#

Map from 0,1 space to measured space

unit_map(X)[source]#

Map from measured to 0,1 space