Param_Observational#
- class obsidian.parameters.continuous.Param_Observational(name: str, min: int | float, max: int | float, search_min: int | float | None = None, search_max: int | float | None = None, design_point: int | float | None = None)[source]#
Bases:
Param_Continuous
This is an observational numeric variable that is used for fitting but is not leveraged during optimization
- name#
The name of the parameter.
- Type:
str
- min#
The minimum value of the parameter.
- Type:
int or float
- max#
The maximum value of the parameter.
- Type:
int or float
- design_point#
The point which the observational value will be locked to during experiment optimization
- Type:
int or float
- __init__(name: str, min: int | float, max: int | float, search_min: int | float | None = None, search_max: int | float | None = None, design_point: int | float | None = None)[source]#
Methods
__init__
(name, min, max[, search_min, ...])decode
(X)Decode parameter from transformed space
encode
(X)Encode parameter to a format that can be used for training
load_state
(obj_dict)Load the state of the Parameter object from a dictionary.
open_search
()Set the search space to the parameter space
save_state
()Save the state of the Parameter object.
set_search
(search_min, search_max)Set the search space for the parameter
unit_demap
(X)unit_map
(X)Attributes
range
The range of the parameter (max - min)