Param_Observational#

class obsidian.parameters.continuous.Param_Observational(name: str, min: int | float, max: int | float, search_min: int | float | None = None, search_max: int | float | None = None, design_point: int | float | None = None)[source]#

Bases: Param_Continuous

This is an observational numeric variable that is used for fitting but is not leveraged during optimization

name#

The name of the parameter.

Type:

str

min#

The minimum value of the parameter.

Type:

int or float

max#

The maximum value of the parameter.

Type:

int or float

design_point#

The point which the observational value will be locked to during experiment optimization

Type:

int or float

__init__(name: str, min: int | float, max: int | float, search_min: int | float | None = None, search_max: int | float | None = None, design_point: int | float | None = None)[source]#

Methods

__init__(name, min, max[, search_min, ...])

decode(X)

Decode parameter from transformed space

encode(X)

Encode parameter to a format that can be used for training

load_state(obj_dict)

Load the state of the Parameter object from a dictionary.

open_search()

Set the search space to the parameter space

save_state()

Save the state of the Parameter object.

set_search(search_min, search_max)

Set the search space for the parameter

unit_demap(X)

unit_map(X)

Attributes

range

The range of the parameter (max - min)