param_space#
A collection of parameters jointly defining an operating or optimization space
Classes
|
Class designed to define the parameter space in which an optimization can be conducted. |
- class obsidian.parameters.param_space.ParamSpace(params: list[Parameter])[source]#
Bases:
IParamSpace
Class designed to define the parameter space in which an optimization can be conducted.
- X_names#
A tuple of the names of the parameters.
- Type:
tuple[str]
- X_cont#
A list of the names of the continuous parameters.
- Type:
list[str]
- X_obs#
A list of the names of the observational parameters.
- Type:
list[str]
- X_discrete#
A dictionary mapping the names of the discrete parameters to their categories.
- Type:
dict[str, list[str]]
- X_task#
A dictionary mapping the names of the task parameters to their categories.
- Type:
dict[str, list[str]]
- X_min#
A tensor containing the minimum values of the parameters.
- Type:
torch.Tensor
- X_max#
A tensor containing the maximum values of the parameters.
- Type:
torch.Tensor
- X_range#
A tensor containing the range of the parameters.
- Type:
torch.Tensor
- X_static#
A list of the names of the static parameters.
- Type:
list[str]
- X_vary#
A list of the names of the varying parameters.
- Type:
list[str]
- n_dim#
The number of dimensions in the parameter space.
- Type:
int
- n_tdim#
The total number of dimensions in the parameter space after transformation.
- Type:
int
- t_map#
A dictionary mapping parameter indices to transformed indices.
- Type:
dict
- tinv_map#
A dictionary mapping transformed indices to parameter indices.
- Type:
dict
- X_discrete_idx#
A list of the indices of the discrete parameters.
- Type:
list[int]
- X_t_discrete_idx#
A list of the indices of the transformed discrete parameters.
- Type:
list[int]
- X_t_cat_idx#
A list of the indices of the transformed categorical parameters.
- Type:
list[int]
- X_t_task_idx#
The index of the transformed task parameter.
- Type:
int
- search_space#
The allowable search space for future optimization.
- Type:
pd.DataFrame
- Raises:
ValueError – If the X_names are not unique.
UnsupportedError – If there is more than one task parameter.
- constrain_inputs(constraint: Input_Constraint) None [source]#
Constrains the input space based on the specified equality, inequality, or nonlinear constraint.
- Parameters:
constraint (Input_Constraint) – The constraint to be applied to the input space.
- classmethod load_state(obj_dict: dict)[source]#
Loads the state of the ParamSpace object from a dictionary.
- Parameters:
obj_dict (dict) – A dictionary containing the state of the ParamSpace object.
- Returns:
A new ParamSpace object with the loaded state.
- Return type:
- map_inv_transform() dict [source]#
Maps the inverse of the transformed dictionary.
- Returns:
A dictionary where the keys are the original values and the values are the original keys.
- Return type:
dict
- map_transform() dict [source]#
Maps the parameter indices to transformed indices based on the parameter types.
- Returns:
A dictionary mapping parameter indices to transformed indices.
- Return type:
dict
- mean() DataFrame [source]#
Calculates the mean values for each parameter in the parameter space.
- Returns:
A DataFrame containing the mean values for each parameter.
- Return type:
pd.DataFrame
- save_state() dict [source]#
Saves the state of the ParamSpace object.
- Returns:
A dictionary containing the state of the ParamSpace object.
- Return type:
dict
- property search_space: DataFrame#
Returns the search space for the parameter space.
- Returns:
A dataframe containing the search space for the parameter space.
- Return type:
pd.DataFrame