Target#
- class obsidian.parameters.targets.Target(name: str, f_transform: str | None = 'Standard', aim: str = 'max')[source]#
Bases:
object
Base class for optimization response targets.
Methods
__init__
(name[, f_transform, aim])load_state
(obj_dict)Loads the state of the target object from a dictionary.
Saves the state of the object as a dictionary.
transform_f
(f[, inverse, fit])Converts a raw response to an objective function value ("score").
- classmethod load_state(obj_dict: dict)[source]#
Loads the state of the target object from a dictionary.
- Parameters:
cls (class) – The class of the target object.
obj_dict (dict) – A dictionary containing the state of the target object.
- Returns:
The loaded target object.
- save_state() dict [source]#
Saves the state of the object as a dictionary.
- Returns:
A dictionary containing the state of the object.
- Return type:
dict
- transform_f(f: float | int | _SupportsArray[dtype[Any]] | _NestedSequence[_SupportsArray[dtype[Any]]] | bool | complex | str | bytes | _NestedSequence[bool | int | float | complex | str | bytes], inverse=False, fit=False)[source]#
Converts a raw response to an objective function value (“score”). Cost-penalization and response transformation should be handled here.
- Parameters:
f (array-like) – The column(s) containing the response values (y)
inverse (bool, optional) – An indicator to perform the inverse transform. Defaults to
False
.fit (bool, optional) – An indicator to fit the properties of the transform function. Defaults to
False
.
- Returns:
An array of transformed f values matching the responses in Z
- Return type:
pd.Series
- Raises:
TypeError – If f is not numeric or array-like
UnfitError – If the transform function is called without being fit first