Logit_Scaler#

class obsidian.parameters.transforms.Logit_Scaler(range_response: int | float = 1, loc: int | float = 0, override_fit: bool = False, standardize: bool = True)[source]#

Bases: Target_Transform

Scaler which normalizes based on a logit transform Can be fit to select an appropriate range for the logit

__init__(range_response: int | float = 1, loc: int | float = 0, override_fit: bool = False, standardize: bool = True)[source]#

Methods

__init__([range_response, loc, ...])

forward(X[, fit])

Evaluate the forward transformation on input data X

inverse(X)

Inverse transform the transformed data X_t

forward(X: Tensor, fit: bool = False)[source]#

Evaluate the forward transformation on input data X

inverse(X: Tensor)[source]#

Inverse transform the transformed data X_t